Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Transl Med ; 20(1): 391, 2022 09 04.
Article in English | MEDLINE | ID: covidwho-2009424

ABSTRACT

Advances in immune checkpoint and combination therapy have led to improvement in overall survival for patients with advanced melanoma. Improved understanding of the tumor, tumor microenvironment and tumor immune-evasion mechanisms has resulted in new approaches to targeting and harnessing the host immune response. Combination modalities with other immunotherapy agents, chemotherapy, radiotherapy, electrochemotherapy are also being explored to overcome resistance and to potentiate the immune response. In addition, novel approaches such as adoptive cell therapy, oncogenic viruses, vaccines and different strategies of drug administration including sequential, or combination treatment are being tested. Despite the progress in diagnosis of melanocytic lesions, correct classification of patients, selection of appropriate adjuvant and systemic theràapies, and prediction of response to therapy remain real challenges in melanoma. Improved understanding of the tumor microenvironment, tumor immunity and response to therapy has prompted extensive translational and clinical research in melanoma. There is a growing evidence that genomic and immune features of pre-treatment tumor biopsies may correlate with response in patients with melanoma and other cancers, but they have yet to be fully characterized and implemented clinically. Development of novel biomarker platforms may help to improve diagnostics and predictive accuracy for selection of patients for specific treatment. Overall, the future research efforts in melanoma therapeutics and translational research should focus on several aspects including: (a) developing robust biomarkers to predict efficacy of therapeutic modalities to guide clinical decision-making and optimize treatment regimens, (b) identifying mechanisms of therapeutic resistance to immune checkpoint inhibitors that are potentially actionable, (c) identifying biomarkers to predict therapy-induced adverse events, and (d) studying mechanism of actions of therapeutic agents and developing algorithms to optimize combination treatments. During the Melanoma Bridge meeting (December 2nd-4th, 2021, Naples, Italy) discussions focused on the currently approved systemic and local therapies for advanced melanoma and discussed novel biomarker strategies and advances in precision medicine as well as the impact of COVID-19 pandemic on management of melanoma patients.


Subject(s)
COVID-19 , Melanoma , Biomarkers , Humans , Immunotherapy/methods , Italy , Melanoma/genetics , Pandemics , Tumor Microenvironment
2.
Cancer Res ; 81(24): 6273-6280, 2021 12 15.
Article in English | MEDLINE | ID: covidwho-1582873

ABSTRACT

Longitudinal studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine-induced immune responses in patients with cancer are needed to optimize clinical care. In a prospective cohort study of 366 (291 vaccinated) patients, we measured antibody levels [anti-spike (IgG-(S-RBD) and anti-nucleocapsid immunoglobulin] at three time points. Antibody level trajectories and frequency of breakthrough infections were evaluated by tumor type and timing of treatment relative to vaccination. IgG-(S-RBD) at peak response (median = 42 days after dose 2) was higher (P = 0.002) and remained higher after 4 to 6 months (P = 0.003) in patients receiving mRNA-1273 compared with BNT162b2. Patients with solid tumors attained higher peak levels (P = 0.001) and sustained levels after 4 to 6 months (P < 0.001) compared with those with hematologic malignancies. B-cell targeted treatment reduced peak (P = 0.001) and sustained antibody responses (P = 0.003). Solid tumor patients receiving immune checkpoint inhibitors before vaccination had lower sustained antibody levels than those who received treatment after vaccination (P = 0.043). Two (0.69%) vaccinated and one (1.9%) unvaccinated patient had severe COVID-19 illness during follow-up. Our study shows variation in sustained antibody responses across cancer populations receiving various therapeutic modalities, with important implications for vaccine booster timing and patient selection. SIGNIFICANCE: Long-term studies of immunogenicity of SARS-CoV-2 vaccines in patients with cancer are needed to inform evidence-based guidelines for booster vaccinations and to tailor sequence and timing of vaccinations to elicit improved humoral responses.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19/immunology , COVID-19/prevention & control , Immunity, Humoral , Neoplasms/immunology , SARS-CoV-2 , Vaccination/standards , Adult , Aged , Antibodies, Viral , COVID-19/epidemiology , Female , Humans , Immunization Programs , Immunoglobulin G , Longitudinal Studies , Male , Middle Aged , Neoplasms/complications , Neoplasms/pathology , Prospective Studies , Surveys and Questionnaires , Time Factors , Vaccination/methods
3.
Clin Cancer Res ; 26(16): 4201-4205, 2020 08 15.
Article in English | MEDLINE | ID: covidwho-599654

ABSTRACT

The potential immune intersection between COVID-19 disease and cancer therapy raises important practical clinical questions and highlights multiple scientific gaps to be filled. Among available therapeutic approaches to be considered, immune checkpoint inhibitors (ICI) seem to require major attention as they may act at the crossroads between cancer treatment and COVID-19 disease, due to their profound immunomodulatory activity. On the basis of available literature evidence, we suggest guidance to consider for treating physicians, and propose areas of clinical and preclinical investigation. Comprehensively, although with the necessary caution, ICI therapy seems to remain a suitable therapeutic option for patients with cancer during the COVID-19 pandemic.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Betacoronavirus/immunology , Coronavirus Infections/immunology , Neoplasms/drug therapy , Pneumonia, Viral/immunology , Antineoplastic Agents, Immunological/pharmacology , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , COVID-19 , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/immunology , Clinical Decision-Making , Clinical Trials as Topic , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Humans , Neoplasms/immunology , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , SARS-CoV-2 , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL